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Non-traumatic and non-drug-induced rhabdomyolysis

Genovefa Kolovou1, Philip Cokkinos1, Helen Bilianou2, Vana Kolovou1,3, Niki Katsiki4,  
Sophie Mavrogeni1 

A b s t r a c t

Rhabdomyolysis (RM), a fortunately rare disease of the striated muscle cells, 
is a  complication of non-traumatic (congenital (glycogen storage disease, 
discrete mitochondrial myopathies and various muscular dystrophies) or ac-
quired (alcoholic myopathy, systemic diseases, arterial occlusion, viral illness 
or bacterial sepsis)) and traumatic conditions. Additionally, RM can occur in 
some individuals under specific circumstances such as toxic substance use 
and illicit drug abuse. Lipid-lowering drugs in particular are capable of caus-
ing RM. This comprehensive review will focus on non-traumatic and non-
drug-induced RM. Moreover, the pathology of RM, its clinical manifestation 
and biochemical effects, and finally its management will be discussed.  
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Introduction

The term “rhabdomyolysis” (RM) first entered PubMed in 1959 [1], al-
though its first clinical description appeared more than a thousand years 
ago [2]. Fortunately a rare disease, it usually presents as a complication 
of non-traumatic (congenital (glycogen storage diseases, mitochondrial 
myopathies and muscular dystrophies) or acquired (alcoholic myopathy, 
systemic disease, artery occlusion, viral or bacterial illness)) and trau-
matic conditions. Additionally, RM may occur in some individuals under 
specific circumstances such as toxic substance use and illicit drug abuse. 
Lipid-lowering drugs may also cause RM [3]. 

Recognizing underlying disorders presenting with RM, particularly 
genetic disorders, is a diagnostic challenge: these diseases are uncom-
mon and present with a  wide range of symptoms. Despite this chal-
lenge, timely diagnosis and appropriate laboratory evaluation are crucial 
for the prevention of new episodes [4]. Early identification of RM is es-
pecially crucial for the prevention of acute kidney disease (AKD) as RM 
is a severe, potentially life-threatening condition with a mortality rate 
of ~10% which is even higher in patients with AKD [5]. Clinically, RM 
presents with muscle aches and weakness, oedema and dark-red urine 
discoloration. Many patients experience only one episode of RM; pa-
tients with more than one episode, additionally to the above-described 
symptoms, complain of exercise intolerance and fatigue and may have 
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a positive family history for myopathy. Typically, 
in RM, the increase of serum creatine kinase (CK) 
is > 10 times the normal upper limit (ULN). If AKD 
is present then creatinine elevation, red urine 
discoloration [6], oliguria (rarely anuria) and elec-
trolyte abnormalities are observed [7]. However, 
the clinical symptoms are often non-specific, and 
red-coloured urine is usually the first indication 
of RM [8]. 

RM is defined as necrosis of muscle cells which 
leads to: 1) leakage of intracellular substances to 
the extracellular fluid and bloodstream and 2) un-
controlled entry of extracellular substances into 
damaged muscle cells, principally calcium. Both 
reactions can cause various systemic complica-
tions [9]. This review will focus on non-traumatic 
and non-drug-induced RM. 

Rhabdomyolysis in genetic disorders

RM can occur in patients with underlying ge-
netic conditions such as glycogen storage diseas-
es (GSDs), mitochondrial myopathies, and mus-
cular dystrophies, which are a  diverse group of 
ailments resulting in progressive muscle atrophy 
and weakness [10]. In most cases the diagnosis of 
congenital myopathy may be obvious because the 
affected individual has already some level of mus-
cle weakness, although exercise-induced cramps 
may be the only presenting symptoms. Below we 
briefly analyze the examples of muscle myopa-
thies which more frequently than other GSDs in-
duce RM. 

Glycogen storage disease

Glycogen is a form of carbohydrate and in hu-
mans is stored in skeletal muscle (~500  g) and 
liver (~100 g) cells [11]. Glycogen storage is con-
trolled by feedback-mediated inhibition of glyco-
gen synthase to prevent exaggerated glycogen 
accumulation. There are more than 13 types of 
GSD, which are classified with Roman numerals 
and, if the name of the person who first reported 
it is known, the disease is called accordingly [11]. 

McArdle disease (GSD-V) 

GSD-V is the most common disorder of muscle 
glycogenesis and is caused by mutations (auto-
somal recessive) in the PYGM gene which en-
codes glycogen phosphorylase [12, 13] resulting 
in an inability of converting muscle glycogen into 
glucose-1-phosphate. This produces glycogen 
accumulation within skeletal muscle cells. Typ-
ically, McArdle disease presents in the first two 
decades of life with exercise intolerance and mus-
cle cramps (occurring within the first few min-
utes of physical effort), episodes of RM, and the 
second-wind phenomenon [12, 13]. Additional 

clinical features may involve muscle hypertrophy 
and permanent muscle weakness, mainly shoul-
der girdle and axial [13–15]. De Stefano et al. 
[16] observed a decrease in the rate of oxidative 
phosphorylation in muscle cells of patients with 
GSD-V due to reduced delivery of glycogen phos-
phorylase to their mitochondria and impaired 
anaerobic glycolysis. Moreover, subjects with 
McArdle disease frequently develop insulin resis-
tance which leads to impaired glucose uptake, 
impaired glycogen production, and alterations in 
fuel oxidation. During exercise, a  rise in lactate 
and ammonia occurs, causing fatigue and exer-
cise intolerance even in the first minutes of phys-
ical effort and a disproportional increase in heart 
rate. Notably, insulin sensitivity decreases with 
age and this may partially explain the disease’s 
late onset in some cases [17]. Moreover, Haller  
et al. [18] showed that in patients with GSD-V the 
Na+-K+ pump may be impaired, and this further 
limits exercise capacity by inducing a  failure of 
skeletal muscle cell membrane excitability. 

RM may present in approximately 50% of 
GSD-V patients but it is likely that only a few de-
velop AKD. Park et al. reported recurrent episodes 
of RM after seizures in a  Korean patient with 
PYGM mutations [19].

Stimulators of RM in patients with GSD-V in-
clude the continuation of physical activity despite 
symptoms, intense exertion [20, 21], viral infec-
tions and seizures [19, 22].

Tarui disease (GSD-VII) 

Tarui disease is caused by a  mutation (au-
tosomal recessive) in the PFKM gene encoding 
phosphofructokinase (PFK) which catalyses the 
conversion of fructose-6-phosphate to fruc-
tose-1.6-diphosphate. PFK deficiency causes my-
opathy and/or haemolysis and may be asymptom-
atic. Four clinical subclasses of Tarui disease have 
been identified: classical, infantile, late-onset, and 
haemolytic [23]. Patients with the classical pre-
sentation complain of muscle cramps and aches, 
physical intolerance, accompanied by nausea and 
vomiting. Jaundice, elevated CK levels, hyperuri-
caemia, and increased serum bilirubin can also 
be seen. Early presentation of Tarui disease may 
manifest as “floppy babies”, arthrogryposis and 
mental retardation. Infants affected with Tarui 
disease may die within the first year of their lives. 
Late onset presents usually in the fifth decade 
and leads to severe disability. The haemolytic form 
features haemolytic anaemia. The combination of 
haemolytic anaemia and myopathy should raise 
the suspicion of GSD-VII [24, 25]. 

Stimulators of RM in patients with GSD-VII in-
clude intense exercise, particularly isometric mus-
cle contraction [25]. 
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GSD-IX

GSD-IX (also called GSD-IXb or GSD-IXd) is 
caused by deficiency of the phosphorylase kinase 
(PhK) which is encoded by the PHKB gene [26]. 
PhK is involved in glycogen [27]. There are two 
types of PhK deficiency, liver PhK and muscle PhK. 
The former is characterized by exercise intoler-
ance, myalgia, muscle cramps, progressive muscle 
weakness and episodes of RM.

Stimulators of RM in patients with GSD-IX: ex-
aggerated physical effort.

GSD-X

GSD-X is caused by a  mutation (autosomal 
recessive) in the PGAM2 gene and is character-
ized by a  reduction of phosphoglycerate mutase 
(PGAM). Usually, symptoms do not present in dai-
ly activities but after exaggerated physical effort 
with muscle pains, myoglobinuria and RM. 

Stimulators of RM in patients with GSD-X: ex-
aggerated physical effort [28–31]. 

GSD-XII 

GSD-XII, or aldolase A, deficiency is caused by 
mutations (autosomal recessive) in the ALDOA 
gene and is characterized by lack of production of 
dihydroxyacetone phosphate and glyceraldehyde 
3-phosphate from fructose 1,6-bisphosphate, due 
to the deficiency of the aldolase A isoform [32, 33]. 
It usually affects muscle cells and erythrocytes. 
Patients may present with haemolytic anaemia, 
muscle pains, exercise intolerance, fatigue and epi-
sodes of RM [33–35], which can appear in the first 
months of life [32, 34].

Stimulators of RM in patients with GSD-XII in-
clude fever and infections [32–36]. 

Mitochondrial myopathies

Impaired oxidative phosphorylation and reduc-
tion of adenosine triphosphate (ATP) production are 
the two main defects of mitochondrial diseases [37]. 
These disorders belong to the most severe inborn 
metabolic diseases, which may be present even in 
newborns and young children. The enzymes involved 
in respiratory chain complexes and ATP synthase are 
encoded by maternally transmitted mitochondrial 
DNA (mtDNA) and nuclear DNA (nDNA). Thus, patho-
genic mutations can therefore reside in both nucle-
ar and mitochondrial genomes. According to mito-
chondrial myopathies [38–40], fortunately episodes 
of RM are infrequent and only a few examples will 
be analysed below. Generally, mitochondrial myop-
athy can be classified into 5 groups: 1) mitochon-
drial myopathy, encephalopathy, lactic acidosis, and 
stroke-like episodes (MELAS) [38], 2) myoclonus epi-
lepsy associated with ragged-red fibres (MERRF) [41, 

42], 3) Kearns-Sayre syndrome (KISS) [43], 4) chronic 
progressive external ophthalmoplegia (CPEO) [44], 
and 5) neurogenic weakness with ataxia and retini-
tis pigmentosa (NARP) [45, 46]. 

The stimulators leading to RM in patients with 
MELAS, MERRF, KISS, CPEO or NARP syndromes are 
similar and include strenuous physical exertion, 
fever and infection [47, 48]. 

MELAS syndrome

The MELAS syndrome was first described by 
HW Koenigsberg [49] but the name was given in 
1984 by Pavlakis et al. [50]. Approximately 80% of 
affected individuals are carriers of the mitochon-
drial transporter (tRNA) m.3243A>G gene. The 
frequency of this mutation in the general popula-
tion is about 1/15,000 births. Affected individuals 
may develop diabetes mellitus, deafness, enceph-
alopathy, seizers, stroke-like episodes, partially 
reversible blindness, short stature and exercise 
intolerance [38, 47, 48]. Nearly 22% of affected 
individuals will die before the age of 18.

MERRF syndrome

The MERRF syndrome is a  multisystem disor-
der characterized by myoclonus (often the first 
presentation) [41, 42]. The mtDNA gene MT-TK 
encoding tRNALys is the gene most commonly as-
sociated with MERRF and is maternally transmit-
ted. Affected individuals may also present with 
generalized epilepsy, ataxia, sensorineural hearing 
loss, myopathy, peripheral neuropathy, dementia, 
short stature, exercise intolerance, and optic atro-
phy. Ragged-red fibres (RRF) are found in muscle 
biopsy or an mtDNA pathogenic variant identified. 
Less frequent clinical features include cardiomy-
opathy, pigmentary retinopathy, pyramidal signs, 
ophthalmoparesis and lipomatosis [41, 42]. 

KISS syndrome

The KISS syndrome has a typical onset before 
the age of 20 and manifests with progressive ex-
ternal ophthalmoplegia, pigmentary retinopathy, 
and cardiac conduction block, hyperproteinorrha-
chia or ataxia [43].

CPEO

Patients with CPEO usually present with pro-
gressive paralysis of the external eye muscles re-
sulting in limited sideways or upwards gaze, mus-
cle fatigue and weakness, exercise intolerance 
and psychiatric disorders [44]. 

NARP

NARP was first described by Holt et al. [51] and 
presents with ptosis, external ophthalmoplegia, 
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proximal myopathy and exercise intolerance, car-
diomyopathy, sensorineural deafness, optic atro-
phy, pigmentary retinopathy, and diabetes melli-
tus. 

Muscular dystrophies

DMD

Mutations of the dystrophin gene are the cause 
of 2 harmful and still incurable diseases, Duchenne 
(DMD) Becker (BMD) muscular dystrophies [52, 
53]. Dystrophinopathies are sex-linked disorders. 
The lack of dystrophin destabilizes the muscle 
membrane, leading to clinical features of delayed 
motor development, calf hypertrophy, joint con-
tractures, and progressive muscle weakness lead-
ing to scoliosis, cardiomyopathy, respiratory insuf-
ficiency, severe physical disability and reduced life 
expectancy, with death occurring before the third 
or fourth decade of life [52, 54–59]. DMD affects 
1/3,500–5,000 live-born males; it is the most com-
mon type of muscular dystrophy in childhood [57, 
58]. Dystrophin is an important part of the dystro-
phin-associated glycoprotein complex, is associ-
ated with other cytoskeletal proteins [60], and is 
essential for cell survival via its transmembrane 
signalling function and modulation of vasomotor 
response to physical activity [61].

Other genetic disorders 

Carnitine palmitoyltransferase deficiency II 
(CPTII)

Other genetic (autosomal recessive) metabolic 
disorders which are associated with RM include 
CPTII deficiency [62–65], which affects adoles-
cents and young adults and is characterized by re-
current myoglobinuria, muscle aches, and stiffness 
induced by exercise, fasting, infection, exposure to 
cold and stress. The condition may be silent until 
the first episode of RM. 

Malignant hyperthermia (MH) 

A genetic disorder which manifests as a hyper-
metabolic response to potent inhalation agents 
(halothane, isoflurane, sevoflurane, desflurane), 
the depolarizing muscle relaxant succinylcholine, 
and to stressors such as strenuous exercise and 
heat [66–68].

The two genes that have been definitively as-
sociated with MH causative mutations are RYR1 
and CACNA1S [69, 70]. MH may occur at any 
time during anaesthesia as well as in the ear-
ly postoperative period [71]. Larach et al. found 
that increased temperature was among the first 
three early signs in 63.5% of MH reactions [72]. 
Hyperthermia can result in a  temperature up to, 
or greater than, 44°C and lead to vital organ dys-

function (heart failure, compartment syndrome, 
see below), and disseminated intravascular coag-
ulation, which is the usual cause of death [73]. Ex-
perimental evidence suggests that the signs and 
symptoms of MH are associated with an uncon-
trolled release of intracellular Ca2+ from the skele-
tal muscle sarcoplasmic reticulum [74]. 

Rhabdomyolysis in acquired diseases

Acquired diseases which can cause RM are 
mainly endocrine disorders, various infections, 
muscle ischaemia and severe agitation. RM can be 
precipitated by electrolyte wasting, thyroid storm, 
increased sympathetic stimulation and metabolic 
demands forcing the body into hyper-metabolism 
[75–77]. 

Endocrine disorders

Hypothyroidism

Hypothyroidism may cause hypothyroid myop-
athy and rarely RM [75]. Clinical symptoms such as 
myalgias, proximal muscle weakness and cramps 
usually resolve after the normalization of thyroid 
hormones. The exact cause of RM in hypothyroid-
ism is still not clarified. It is believed that impaired 
glycogenolysis, impaired mitochondrial oxidative 
metabolism or triglyceride turnover in thyroxine 
deficiency may be the responsible mechanisms 
[78–80]. Katipoglu et al. [81] describe a  case of 
RM complicated by AKD in a patient who devel-
oped hypothyroidism after stopping l-thyroxine, 
which he was taking after undergoing total thy-
roidectomy for papillary thyroid cancer. The patho-
physiology of AKD due to hypothyroidism may be 
explained by a decrease in cardiac output, which 
leads to reduced renal blood supply and the de-
crease of glomerular filtration rate (GFR) [80]. On 
the other hand, T3 (triiodothyronine) may directly 
affect systemic (including renal) vascular resis-
tance. Moreover, brain natriuretic peptide (pro-
duced mainly from the ventricles in response to 
volume expansion, pressure overload, and elevat-
ed end diastolic pressure) levels have been found 
to be influenced by free T3 and T4 (thyroxine) [82, 
83]. It has also been shown that T4 regulates Na+/
Ca2+ channels and Na+/K+-ATPase activity (see be-
low) in the nephron sarcoplasmic reticulum [84–
86]. Of note, haemodialysis patients are likely to 
have an increased risk for hypothyroidism-induced 
RM due to the presence of comorbidities such 
as electrolyte imbalance, diabetes mellitus, and 
drug interactions (statins, antihypertensives, and 
antiarrhythmics) [86]. Another important mecha-
nism of RM in hypothyroidism is the coexistence 
of statin therapy with potentially decreased drug 
catabolism, resulting in higher serum statin levels 
[87]. Also, amiodarone (a  class III antiarrhythmic 
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drug) may induce clinical hypothyroidism in ap-
proximately 5% of treated patients. Thus, hypo-
thyroidism must be considered in the aetiological 
assessment of RM in these patients.

Hyperthyroidism

Hyperthyroidism may present as indolent prox-
imal weakness, idiopathic ocular myositis or poly-
myositis [88, 89]. Painless thyroiditis is character-
ized by transient thyrotoxicosis lasting 2–4 weeks, 
followed by hypothyroidism for 1–3 months, and 
then resolution. Patients with painless thyroiditis 
usually do not require treatment during the hyper-
thyroid or hypothyroid phase because thyroid dys-
function is transient and rarely severe. However, if 
thyrotoxicosis leads to hypokalaemia, generalized 
muscle weakness (thyrotoxic periodic paralysis), 
RM and cardiac arrhythmias, including life-threat-
ening ventricular tachycardia, may ensue [90]. The 
decreased potassium release from muscle cells 
due to hypokalaemia can decrease blood flow to 
muscles, leading to ischaemic RM [91]; see below. 
Chang et al. [92] describe a 61-year-old man with 
thyrotoxicosis, lower extremity paralysis and se-
vere hypokalaemia. Despite attempts to correct 
potassium levels he developed pulseless polymor-
phic ventricular tachycardia (resuscitated with 
defibrillation), AKD and RM. The authors explain 
the cause of RM by 2 mechanisms, namely severe 
hypokalaemia and increased CK secondly to chest 
compressions and defibrillation. The release of CK 
after cardioversion indicates increased skeletal 
muscle damage and may predispose patients to 
RM [93–95]. Moreover, RM induced by hyperthy-
roidism may be present in individuals after ex-
ercise. Summachiwakij and Sachmechi describe 
RM in a patient with Graves disease induced by 
non-strenuous exercise [96]. 

Hyper/hypoparathyroidism

Hyperparathyroidism may cause muscle weak-
ness (dropped head syndrome), muscle pain, or 
ischaemic, calcifying myopathy [97, 98]. 

Muscle involvement in hypoparathyroidism 
may present as myopathy, neuromyotonia, or RM. 
Sumnu et al. [99] describe the case of a 26-year-
old epileptic male with leg myalgias, cramps, 
nausea, vomiting, and decreased urine output. 
He was admitted to the emergency department 
several times over 6 months and eventually diag-
nosed with primary hypoparathyroidism and AKD 
secondary to severe RM. 

Diabetes mellitus

Diabetes is known to predispose to RM in pa-
tients with hyperosmolarity. Diabetes mellitus 
may cause diabetic myopathy [100–102] with 

a  wide range of abnormalities, such as painless 
muscle wasting (diabetic amyotrophy), muscle in-
flammation, ischaemia, infarction, fibrosis, fatty 
atrophy, haemorrhage and diabetic myonecrosis, 
a self-limiting condition with acute onset of oede-
ma and severely painful muscle necrosis. Usually, 
myonecrosis occurs in poorly controlled diabetes 
[103, 104]. The development of RM in diabetic 
patients depends on the severity of serum hyper-
osmolarity and the presence of hypernatraemia 
[77, 105]. Another mechanism which may pro-
voke episodes of RM is through chronic kidney 
dysfunction, often present in diabetic patients, 
and comorbidities such as electrolyte imbalance 
and drug interactions (antihyperlipidemic, anti-
hypertensives, and antiarrhythmics). Of note, hy-
polipidemic drugs (statin and/or fibrates), which 
many of these patients are taking, may provoke 
RM [106]. Antidiabetic drugs may also cause RM. 
Slim et al. report a case of a patient who devel-
oped severe RM after receiving pioglitazone [107] 
and Yokoyama et al. [108] report such a case af-
ter troglitazone. Potential risk factors identified 
in these cases include concomitant therapy with 
fibrate, alcohol abuse, and asymptomatic mild CK 
elevation prior to initiating therapy.

Adrenal insufficiency 

RM is reported rarely in patients with acute ad-
renal insufficiency and may present as myopathy, 
hyperkalaemic neuromyopathy and hyponatrae-
mia with sodium concentration reported as low 
as 97 mmol/l [109]. Convulsions because of hy-
ponatraemia can also cause muscle damage and 
a  subsequent rise in CK. Lau and Yong describe 
a patient with acute primary adrenal insufficien-
cy and severe hyponatraemia complicated by RM 
and AKD [110]. 

Bacterial, viral and fungal infections 

Potentially all bacterial, viral and fungal in-
fections can lead to RM [111–114]. Particularly, 
viral infections may cause various complications 
involving skeletal muscle, from non-specific my-
algias to severe myositis and RM. Tanaka et al. 
[115] identified the influenza virus as an implicat-
ed agent in nearly 33% of known virus-induced 
RM. RM has been described in infections from 
Staphylococcus aureus, Mycoplasma pneumoniae, 
tuberculosis, tetanus, Salmonella, Brucella, Legio-
nella and others [116–122]. Infectious conditions 
destroy muscle tissue by toxin production or direct 
bacterial invasion.

Muscle ischaemia

Conditions of generalized ischaemia and hy-
poxaemia, such as cardiogenic shock, CO poison-
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ing and status asthmaticus, are possible causes 
of RM, as they are associated with insufficient 
ATP production and sarcolemma dysfunction due 
to limited cellular oxygen delivery [123]. Local-
ized compression, arterial thrombosis, prolonged 
vascular occlusion during surgical operations, 
air emboli and severe sickle cell crisis are oth-
er causes of RM. However, many events which 
eventually lead to RM due to muscle ischaemia 
occur during the reperfusion phase. After circu-
lation is restored, large amounts of potentially 
toxic intracellular content are released into the 
bloodstream. 

Conditions with agitation

Conditions with severe agitation, such as pro-
tracted myoclonic seizures in status epilepticus, 
delirium tremens, and the use of psychostimulant 
drugs may lead to RM [19, 42, 124, 125]. Severe ag-
itation results in a state where ATP production can-
not keep up with cellular demand, leading to deple-
tion of energy supply and eventually cellular death.

The above listed causes of RM, and their rela-
tive prevalence, are summarised in Table I. 

Rhabdomyolysis pathology

Independently of what causes RM, the conse-
quences are the same. The increase in concentra-
tion of intracellular ionized calcium is the most 
harmful pathological process, is activated in RM 
and is critical for muscle cell survival. Muscle cell 
membrane damage allows leakage of intracellu-
lar ingredients (proteins, glycogen, carbonic an-
hydrase, CK, aldolase, lactate dehydrogenase and 
electrolytes) to extracellular fluid and thence the 
bloodstream. On the other hand, membrane dam-
age permits the uncontrolled flow of calcium into 
the cytoplasm [126, 127]. 

Proteins

Myoglobin (Mb) is the fundamental muscle 
cell protein and is composed of globin (a  poly-
peptide chain of 153 amino acids) and of one 
molecule of haem. The Mb molecular weight is 
18,800 daltons, one-fourth of haemoglobin [1, 
9, 128] and is present in both heart and in the 
skeletal muscles. The Mb concentration in these 
cells depends on the work performed by the tis-
sue. For example, in people living at high altitude 
the concentration of Mb in the cells is increased. 
Also, in marine mammals Mb concentration is 
approximately 10 times higher than that of ter-
restrial mammals, giving them the ability to dive 
to great sea depths. 

Mb is responsible for temporary oxygen storage 
[129] and correlates with cytochrome C oxidase 
expression, as well as capillary density [130, 131]. 

When muscle anoxia is present, Mb decreases 
the demand for glycolytic processes by releasing 
its oxygen content and allowing a continuance of 
much more efficient oxidative breakdown of lac-
tate, pyruvate and similar metabolites. Plasma Mb 
concentration is around 0.003 mg/dl. However, 
Mb may escape from damaged skeletal cells and 
bind to haptoglobin. Damage of more than 100 g 
of skeletal muscle leads to haptoglobin binding ca-
pacity saturation [129, 132–134] and circulating 
Mb becomes “free” to be filtered by the kidneys, 
where it acts directly on the nephrons, causing 
distal renal tubular necrosis. The half-life of Mb is  

Table I. Causes and relative prevalence of non-trau-
matic, non-drug-induced rhabdomyolysis [11–125]

Cause Prevalence

Genetic disorders:

Glycogen storage disease  
(per live births)

GSD-V McArdle disease 1/100,000

GDD-VII Tarui disease < 1/1,000,000

GSD-IX 1/100,000

GSD-X 1/20,000–40,000

GSD-XII 1/20,000–43,000

Other:

CTPII 1–9/100,000

Malignant hyperthermia 1/5,000–50,000

Mitochondrial myopathies:

MELAS syndrome 1–-9/1,000,000

MERRF syndrome 0.9/100,000

KISS syndrome Unclear; low

CPEO 1/30,000

NARF 1/36,000–40,000

Muscular dystrophies:

DMD Duchenne 1/3,500 males

BMD Becker 1/18,000–31,000 males

Acquired diseases:

Hypo/hyperthyroidism 4–5%

Hypo/hyperparathyroidism 25–66/100,000

Diabetes mellitus 8.6%

Adrenal insufficiency 4.4–6/1,000,000

Infection Up to 15% in sepsis

Muscle ischaemia 29.9/100,000

Agitation 8–15% in myoclonus
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2–3 h. Following muscle injury, Mb serum concen-
tration increases within 1–3 h, peaks within 8–12 h,  
and then returns to normal concentration within 
24 h [128]. Additionally, in RM increased levels of 
heavy-chain myosin fragments are observed and 
other proteases such as lactate dehydrogenase, 
aspartate aminotransferase (AST) and decreased 
levels of albumin (see below). In patients with RM, 
Mb concentration is not a diagnostic or prognostic 
criterion [134].

Free oxygen radicals 

The increase in concentration of intracellular 
ionized calcium which occurs in RM may activate 
various vasoactive molecules and proteases, lead-
ing to the production of reactive oxygen species 
(ROS) [134]. The injured muscle cell is attacked by 
activated neutrophils, which increase the damage 
by releasing proteases and free radicals [135], 
resulting in an inflammatory, self-sustaining my-
olytic reaction rather than pure necrosis. These 
processes take place only after blood flow into the 
damaged tissue is restored. 

Glycogen

The main muscle carbohydrate is glycogen. 
During RM blood glycogen levels may be raised 
and glycosuria may be present [136]. 

Carbonic anhydrase III

Carbonic anhydrase III (CA III) is a metalloen-
zyme found mainly in skeletal muscle, liver and 
adipose tissue. Its physiological role is to catalyze 
carbon dioxide and water to form bicarbonate 
and protons. CA III is considered as a biomarker 
of muscle ischaemia/necrosis [137, 138]. Lippi  
et al. [139] observed increased CA III levels in 
healthy men who performed 21-km runs. Of note, 
the MB myocardial isoenzyme of creatine phos-
phokinase (CK-MB, see below) is also higher as 
compared to pre-run levels. 

CK

CK is an enzyme present in all types of mus-
cle and its increased concentration in plasma 
is a  marker of RM: after muscle damage, CK is 
released into the circulation [93, 140]. The main 
function of CK is to catalyse the transportation 
of one phosphate group from creatinine to ade-
nosine diphosphate (ADP), resulting in ATP [128, 
141]. There are 3 CK isoenzymes: muscle-type 
(CK-MM), brain-type (CK-BB) and CK-MB. After 
muscle injury CK is elevated within the first 12 h,  
peaks within the first 3 days, and returns to 
baseline levels 3–5 days later [128, 141]. The 
increase of CK-MM concentration in some cas-

es can reach even 100,000 IU/ml or more [128, 
141]. Plasma CK elevation lasts longer than the 
Mb elevation (Mb is rapidly metabolized by the 
liver; see above) [128, 141]. Therefore, tests eval-
uating Mb concentration in plasma or urine are 
not very helpful. 

Calcium

Ionized calcium can be found in both extracellu-
lar and intracellular compartments of the human 
body. Its concentration in the extracellular space 
is significantly higher compared with the intracel-
lular space (~10,000 times higher). Major factors 
causing the shifting of ionized calcium from the 
extracellular to the intracellular space are either 
energy depletion in the muscle cell or rupture of 
the membrane’s continuity (ionized calcium influx 
from the extracellular space into the cell due to its 
chemical gradient) [127, 142, 143]. The increased 
intracellular concentration of ionized calcium 
leads to overwork and overuse of the cell’s energy. 
These two provoke increased sarcoplasmic influx 
of ionized sodium, chloride and water retention. 
The above result in cellular swelling and eventual 
destruction [144]. Ionized calcium further pene-
trates into the cell in exchange for ionized sodium 
to protect the increased intracellular sodium con-
centration [145]. Moreover, once muscle cells are 
injured, two major processes take place: 1) ATP 
leaks from cells causing ATPase pump dysfunc-
tion and further increase in ionized sodium, which 
activates the 2Na+/Ca2+ exchanger to correct ionic 
abnormalities [123, 128] and 2) the mitochondria 
release stored ionized calcium into the cytoplasm 
as a  rescue measure [146]. All the above cause 
persistent contraction, ATP depletion, exhaustion 
and eventually cellular death. 

Potassium

Muscle cells contain a  significant amount of 
potassium and when disruption of the cell’s mem-
brane occurs its escape into the circulation results 
in hyperkalaemia: potassium levels higher than 
8.5 mEq/l can cause cardiac arrhythmias (e.g. ven-
tricular fibrillation) and sudden death] [91, 123, 
128].

Compartment syndrome 

On top of all the processes described above, 
the compartment syndrome may develop. As was 
already mentioned, failure of the transmembrane 
pump systems leads to muscle cell swelling. Then, 
intracompartmental pressure rises and may pro-
voke additional damage and necrosis which due 
to anatomical particularities (non-communicating, 
closed systems) may require a  fasciotomy [147–
149]. 
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Clinical and biochemical effects  
of rhabdomyolysis

As was already mentioned, RM is a severe and 
potentially life-threatening condition. There are 
various clinical and biochemical consequences of 
RM induced by muscle cell damage, such as the 
following: 1) fluid overload in the affected limb(s), 
reaching even 10 l/limb. This results in severe hy-
povolaemia and hypernatraemia, which may lead 
to hypovolaemic shock and/or acute renal failure 
[150]; 2) hyperalbuminaemia caused by hypovo-
laemia (later changes to hypoalbuminaemia due 
to inflammation, malnutrition, fluid overload);  
3) acidosis provoked by lactic acid escape from the 
cells [151] which worsens hyperkalaemia and al-
lows intratubular precipitation of Mb and uric acid; 
4) severe hypocalcaemia due to release from the 
storage site and hyperphosphataemia, which may 
lead to cardiac arrhythmias, muscular contractions 
or seizures [152]; 5) release of nucleosides into the 
bloodstream (metabolized in the liver to purines, 
i.e. xanthine, hypoxanthine, and uric acid, which 
further stimulates tubular obstruction); 6) release 
of proteases into the bloodstream may cause he-
patic dysfunction in 25% of patients with RM [153];  
7) acute kidney injury (AKI, see below); and 8) dis-
seminated intravascular coagulation as a result of 
the activation of the coagulation cascade by compo-
nents released from damaged muscles, which may 
be responsible for haemorrhagic complications. 

RM-induced AKI 

The pathophysiology of RM-induced AKI is be-
lieved to be caused mainly by 3 mechanisms: re-
nal vasoconstriction, intratubular cast formation, 
and Mb toxicity [154, 155]. 

Reduced renal blood flow causes renal vaso-
constriction and secondary activation of the re-
nin–angiotensin–aldosterone system. Also, the 
decrease in renal blood flow promotes cast forma-
tion. On the other hand, Mb and its breakdown 
compounds such as iron exert direct a  cytotox-
ic effect on the nephron [142]. Additionally, iron 
in the Mb oxidizes lipid membrane components 
and causes lipid peroxidation, called redox cy-
cling [142]. The presence of metabolic acidosis 
promotes cast formation, tubular obstruction and 
pronounced Mb nephrotoxicity [156].

Rhabdomyolysis management

Management of RM is presently based on ob-
servations from retrospective studies, case re-
ports, and case series which describe various RM 
treatments, particularly for AKI complications. The 
most significant intervention in RM, which may 
save the life of the patient, is to preserve diuresis 
by considerable hydration, use of mannitol, urine 

alkalization and forced diuresis [86, 157]. Immedi-
ate fluid resuscitation to restore and preserve re-
nal perfusion and increase urine flow rate [132] is 
critical. Potassium or lactate-containing solutions 
should be avoided because of the risk of RM-as-
sociated hyperkalaemia and lactic acidosis [133]. 
Urine alkalinisation with sodium bicarbonate (not 
needed in patients with good urinary response) is 
helpful for decreasing cast formation, diminish-
ing the nephrotoxic effects of Mb, inhibiting lipid 
peroxidation, and decreasing the risk of hyperka-
laemia [133, 146, 158]. Hyperkalaemia treatment 
should be initiated with IV insulin, glucose and 
calcium. In some cases, dialysis may be an option. 
Hypercalcaemia responds to saline diuresis and IV 
furosemide [133, 146]. In cases with RM-induced 
hyperphosphataemia greater than 7 mg/dl oral 
phosphate binders may be administered. Hypo-
phosphataemia, which may occur late in RM, re-
quires treatment only when the serum level is be-
low 1 mg/dl [150]. Dialysis should be considered 
as a lifesaving procedure for patients with severe-
ly elevated serum potassium, persistent acidosis, 
or oliguric AKI with fluid overload [158]. For the 
better management of renal replacement therapy 
in RM-induced AKI see Guidelines of Kidney Dis-
ease Improving Global Outcomes (KDIGO Clinical 
Practice Guideline for Acute Kidney Injury. [http://
www.kidney-international.org).

 
Conclusions

Rhabdomyolysis is a  severe and potentially 
life-threatening condition, fortunately presenting 
infrequently. Early identification is key to timely 
treatment. Recognizing underlying abnormalities, 
particularly genetic disorders, is a diagnostic chal-
lenge. Familiarity with RM pathophysiology leads 
to its better management, particularly for renal re-
placement interventions in RM-induced AKI. 
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